
On the distance between two neural networks and the stability of learning

Distance between networks

How should we measure distance between two neural 
networks with the same architecture but different weights?
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Optimisation theory

github.com/jxbz/fromage

This panel is intended for optimisation experts. Others should 
feel free to skip ahead to the Fromage optimiser. 

First order optimisation theory relies on having a sensible 
notion of distance for the function class. How can we use our 
insights on deep relative trust to this end?

An upper bound on all continuously differentiable functions

A new learning rule
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                     f(x) = W2 ⋅ ϕ(W1x) f̃(x) = W̃2 ⋅ ϕ(W̃1x)

First attempt: flattening

Stack the weights into vectors  and , and take the norm: 
. 

But this ignores the layered structure of the network! And it 
ignores the symmetry of  and .

w w̃
∥ w̃ − w∥2

W1 → α ⋅ W1 W2 → 1
α ⋅ W2

Second attempt: deep relative trust
Define a new distance function called “deep relative trust”: 

. 

…the relative functional difference satisfies: 

. 

…the Jacobian with respect to the th hidden layer satisfies: 

. 

 hides constants that multiply over layers. The constants 
depend on matrix condition numbers and the nonlinearity.

D (f̃, f) :=
L

∏
l=1 (1 +

∥W̃l − Wl∥F

∥Wl∥F ) − 1

∥ f̃(x) − f(x)∥2

∥f(x)∥2
⪅ D (f̃, f)
l

∥∇l f̃(x) − ∇l f(x)∥F

∥∇l f(x)∥F
⪅ D (f̃, f)

⪅

Suppose that our loss function  is continuously 
differentiable and the parameters fall into  groups. Then the 
change in loss  is upper bounded by: 

where  is the angle between  and .
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A general descent condition for neural networks

The terms in square brackets compare the relative change in 
gradient along the step to the cosine of the angle between 
the step and the negative gradient. 

For neural networks, this means that descent is guaranteed 
provided that for each layer : 

Learning rate tuning in gradient descent would then amount 
to tuning the size of  to match this condition.
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Modelling the neural network gradient

The neural network gradient depends on network Jacobians 
and subnetwork outputs. This suggests using deep relative 
trust to model the relative change in gradient.

youtu.be/dUm8hZFtbLg

There is a very simple learning rule that respects the 
structure of deep relative trust. For each layer , it sets: 

                         .                (LARS)

l

Wl ← Wl − η ⋅
∥Wl∥F

∥gl∥F
⋅ gl

The learning rate  directly controls the relative change to 
each layer. LARS was proposed in 2017 by Yang You, Igor 
Gitman and Boris Ginsburg on empirical grounds.

η

Frobenius matched gradient descent

We propose a minor correction to LARS that stabilises 
training in scale invariant networks: 

      .       (Fromage)Wl ←
1

1 + η2 (Wl − η ⋅
∥Wl∥F

∥gl∥F
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We found that Fromage worked across many deep learning 
experiments with the same learning rate of .η = 0.01

Also, the training performance of Fromage was often an 
order of magnitude better than that of SGD.
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