
On the distance between two neural networks and the stability of learning

Distance between networks

How should we measure distance between two neural
networks with the same architecture but different weights?

Jeremy Bernstein, Arash Vahdat, Yisong Yue, Ming-Yu Liu

Optimisation theory

github.com/jxbz/fromage

This panel is intended for optimisation experts. Others should
feel free to skip ahead to the Fromage optimiser.

First order optimisation theory relies on having a sensible
notion of distance for the function class. How can we use our
insights on deep relative trust to this end?

An upper bound on all continuously differentiable functions

A new learning rule

bernstein@caltech.edu

 f(x) = W2 ⋅ ϕ(W1x) f̃(x) = W̃2 ⋅ ϕ(W̃1x)

First attempt: flattening

Stack the weights into vectors and , and take the norm:
.

But this ignores the layered structure of the network! And it
ignores the symmetry of and .

w w̃
∥ w̃ − w∥2

W1 → α ⋅ W1 W2 → 1
α ⋅ W2

Second attempt: deep relative trust
Define a new distance function called “deep relative trust”:

.

…the relative functional difference satisfies:

.

…the Jacobian with respect to the th hidden layer satisfies:

.

 hides constants that multiply over layers. The constants
depend on matrix condition numbers and the nonlinearity.

D (f̃, f) :=
L

∏
l=1 (1 +

∥W̃l − Wl∥F

∥Wl∥F) − 1

∥ f̃(x) − f(x)∥2

∥f(x)∥2
⪅ D (f̃, f)
l

∥∇l f̃(x) − ∇l f(x)∥F

∥∇l f(x)∥F
⪅ D (f̃, f)

⪅

Suppose that our loss function is continuously
differentiable and the parameters fall into groups. Then the
change in loss is upper bounded by:

where is the angle between and .

ℒ(W)
L

ℒ(W + ΔW) − ℒ(W)

θl ΔWl −∇Wl
ℒ(W)

A general descent condition for neural networks

The terms in square brackets compare the relative change in
gradient along the step to the cosine of the angle between
the step and the negative gradient.

For neural networks, this means that descent is guaranteed
provided that for each layer :

Learning rate tuning in gradient descent would then amount
to tuning the size of to match this condition.

l

ΔWl

−
L

∑
l=1

∥∇Wl
ℒ(W)∥F∥ΔWl∥F [cos θl − max

t∈[0,1]

∥∇Wl
ℒ(Wl + tΔWl) − ∇Wl

ℒ(Wl)∥F

∥∇Wl
ℒ(Wl)∥F],

max
t∈[0,1]

∥∇Wl
ℒ(Wl + tΔWl) − ∇Wl

ℒ(Wl)∥F

∥∇Wl
ℒ(Wl)∥F

< cos θl .

Modelling the neural network gradient

The neural network gradient depends on network Jacobians
and subnetwork outputs. This suggests using deep relative
trust to model the relative change in gradient.

youtu.be/dUm8hZFtbLg

There is a very simple learning rule that respects the
structure of deep relative trust. For each layer , it sets:

 . (LARS)

l

Wl ← Wl − η ⋅
∥Wl∥F

∥gl∥F
⋅ gl

The learning rate directly controls the relative change to
each layer. LARS was proposed in 2017 by Yang You, Igor
Gitman and Boris Ginsburg on empirical grounds.

η

Frobenius matched gradient descent

We propose a minor correction to LARS that stabilises
training in scale invariant networks:

 . (Fromage)Wl ←
1

1 + η2 (Wl − η ⋅
∥Wl∥F

∥gl∥F
⋅ gl)

We found that Fromage worked across many deep learning
experiments with the same learning rate of .η = 0.01

Also, the training performance of Fromage was often an
order of magnitude better than that of SGD.

https://github.com/jxbz/fromage
https://github.com/jxbz/fromage
mailto:bernstein@caltech.edu
mailto:bernstein@caltech.edu
https://youtu.be/dUm8hZFtbLg
https://youtu.be/dUm8hZFtbLg

