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Compressed optimisation for  
non-convex problems

signSGD
Snap gradient 

components to ±1Reduces 
communication 

time

Realistic for 
deep learning
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GRADIENT COMPRESSION……WHY CARE?
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DISTRIBUTED SGD
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SIGNSGD WITH MAJORITY VOTE
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COMPRESSION SAVINGS OF MAJORITY VOTE
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SIGNSGD IS A SPECIAL CASE OF ADAM

signSGD Adam

Signum
(Sign momentum)



ADAM……………………WHY CARE?
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UNIFYING ADAPTIVE GRADIENT METHODS + COMPRESSION

Sign descent 
weak theoretical foundation 
incredibly popular (e.g. Adam)

Compressed descent 
weak theoretical foundation 
take pains to correct bias 
empirically successful

Sign-based gradient compression?

Need to  

build a 

theory
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DOES SIGNSGD EVEN CONVERGE?

What might we fear?
➤ Might not converge at all
➤ Might have horrible dimension dependence
➤ Majority vote may give no speedup by adding extra machines

Compression can be a free lunch
Our results
➤ It does converge
➤ We characterise functions where signSGD & majority vote are as nice as SGD
➤ Suggest these functions are typical in deep learning



SINGLE WORKER RESULTS

Assumptions

SGD gets rate ! [ 1
K

K−1

∑
k=0

∥gk∥2
2] ≤ 1

N [2∥ ⃗L ∥∞( f0 − f*) + ∥ ⃗σ ∥2
2]

signSGD gets rate ! [ 1
K

K−1

∑
k=0

∥gk∥1]
2

≤ 1
N [ ∥ ⃗L ∥1 (f0 − f* + 1

2 ) + 2∥ ⃗σ ∥1]
2

f*➤ Objective function lower bound 
⃗σ➤ Coordinate-wise variance bound

⃗L➤ Coordinate-wise gradient Lipschitz

K➤ Number of iterations

N➤ Number of backpropagations

Define
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MULTI WORKER RESULTS
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M
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Assumptions
f*➤ Objective function lower bound 

⃗σ➤ Coordinate-wise variance bound
⃗L➤ Coordinate-wise gradient Lipschitz

majority vote gets

if gradient noise is 
unimodal symmetric
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CHARACTERISING THE DEEP LEARNING LANDSCAPE EMPIRICALLY

➤ signSGD cares about gradient density
Natural measure of density

=1 for fully dense v 

≈0 for fully sparse v

➤ majority vote cares about noise symmetry

For large enough mini-batch size, 
reasonable by Central Limit Theorem.
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SIGNUM IS COMPETITIVE ON IMAGENET

Performance very similar to Adam

May want to switch to SGD towards end?



DOES MAJORITY VOTE WORK?

Jiawei Zhao  
NUAA

Cifar-10, Resnet-18
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