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Why care about signSGD?
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DISTRIBUTED SGD
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SIGNSGD WITH MAJORITY VOTE
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COMPRESSION SAVINGS or MAJORITY VOTE

# bits
per component
per iteration

SGD Majority vote



SIGNSGD IS A SPECIAL CASE OF ADAM

gk gr + Bgr—1+ B Gr—o + . ..

Adam

signSGD sign(gx) =
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Signum  SIgN (gx + Bgk—1 + Bgr—2+...)
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UNIFYING ADAPTIVE GRADIENT METHODS + COMPRESSION

Sign descent Compressed descent
¢ weak theoretical foundation ¢ weak theoretical foundation
¢ incredibly popular (e.g. Adam) ¢ take pains to correct bias

¢ empirically successful

Need to
build a

Sign-based gradient compression? theory
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Theoretical convergence results




DOES siGNSGD EVEN CONVERGE?

What might we fear?
» Might not converge at all
» Might have horrible dimension dependence

» Majority vote may give no speedup by adding extra machines

Compression can be a free lunch

Our results
> [t does converge
» We characterise functions where signSGD & majority vote are as nice as SGD

» Suggest these functions are typical in deep learning



SINGLE WORKER RESULTS

Assumptions Define
» Objective function lower bound f:k > Number of iterations [
» Coordinate-wise variance bound ¢ > Number of backpropagations [\

—
> Coordinate-wise gradient Lipschitz [

SGD gets rate
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SINGLE WORKER RESULTS

Assumptions

» Objective function lower bound f:k

» Coordinate-wise variance bound

» Coordinate-wise gradient Lipschitz

SGD gets rate

signSGD gets rate
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> Number of iterations [

> Number of backpropagations [\




MULTI WORKER RESULTS with M workers

Assumptions
» Objective function lower bound f:k

» Coordinate-wise variance bound ¢

» Coordinate-wise gradient Lipschitz
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CHARACTERISING THE DEEP LEARNING LANDSCAPE EMPIRICALLY

» signSGD cares about gradient density > majority vote cares about noise symmetry

Natural measure of density

. |I91# =1 for fully dense v
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Imagenet results




SIGNUM IS COMPETITIVE ON IMAGENET
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Performance very similar to Adam

May want to switch to SGD towards end?



DOES MAJORITY VOTE WORK?

Cifar-10, Resnet-18

Train Accuracy Test Accuracy Jiaweir Zhao
NUAA
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on server
pull sign(g,,) from each worker

push sign [Z%Zl sign ( §m)] to each worker
on each worker
Tri1 < T — 0Sign [Z%zl sign(gm)}

Poster tonight!
6.15—9 PM @ Hall B #72



